APPRENTI GÉOMÈTRE » est « un logiciel qui, malgré son nom, a été conçu comme une aide à l’apprentissage des mathématiques en général, et pas seulement de la géométrie » (Initiation aux fractions, …). La présente brochure « en propose une description plus détaillée et approfondit les idées qui ont présidé à sa création ».
Quatorze chapitres autour « des questions inventées par les enseignants pour donner du sens à la discipline « maths », du rôle qu’ils attribuent aux questions ouvertes, aux concepts, au calcul, à leurs recherches et à celles des élèves ». A quoi servent et peuvent servir les maths... Pourquoi s’intéresser à l’histoire des maths...
Cette brochure rassemble, outre des témoignages, une biographie, un entretien sur la géométrie de l’espace et une liste des principales publications de François Colmez. Elle s'adresse à la fois aux militants du vingtième siècle qui évoqueront leurs souvenirs et aux jeunes curieux de l’histoire récente et mouvementée de notre enseignement.
Quelque vingt textes explicatifs interactifs, une chasse au trésor avec 27 énigmes disséminées, un matériel de codage personnalisable grâce à ses six planches à découper,...
Bande dessinée. Vingt énigmes, paradoxes ou curiosités (partage de chameaux ; miroir à une face ; longueur du demi-cercle = 2R ; 1 = 3 ; etc.). - neuf énigmes policières. - huit calculs amusants. - huit pages de "solutions et compléments"
Hypercube - Kangourou. N° 42-43. 64 pages en 21 x 28,1. Onze activités, sept rallyes (dont un sur 16 pages), des compléments, solutions.
10 clins d’oeil fondamentaux sur 40 siècles d’histoire des maths, en 48 pages, plus six planches à découper,
Trier, comparer, ordonner sont des activités courantes depuis la nuit des temps qui se sont formalisées et perfectionnées en intégrant le domaine des mathématiques sous forme d’inéquations ou de relations d’ordre.
Réalisé en association avec la Société française de statistique, ce recueil d’articles propose un échantillon de certains des défis auxquels fait face la recherche en statistique.
Il y a quatre cents ans naissait Blaise Pascal. Figure incontournable du XVIIe siècle, son nom reste fortement attaché au triangle arithmétique qu’il a exploré en détail, développant au passage de nouvelles façons de raisonner.
Ce livre, conçu comme un clin d’œil à la revue Tangente, propose une exploration des différentes facettes de la notion de tangence que l’on retrouve dans tous les domaines des mathématiques et dans plusieurs applications parfois inattendues.
Le jeu est l’une des activités humaines les plus pratiquées, par les enfants comme les adultes. Quand il est partagé avec d’autres, on parle de jeu de société. Depuis des siècles, il en existe des milliers, et de nouveaux voient le jour régulièrement, souvent liés à la culture des différents pays.
Évariste Galois est à la fois l’un des mathématiciens les plus célèbres et l’un des plus mal connus. Ses travaux ont bouleversé l’approche des équations algébriques. C’est dans la marge de son dernier mémoire, écrit peu avant sa mort en duel à l’âge de 20 ans, qu’on trouve la célèbre formule « Je n’ai pas le temps ».
Née au début du XIXe siècle dans la tête du jeune mathématicien génial Évariste Galois dans le cadre de la résolubilité d’une équation polynomiale, la notion de groupe a littéralement envahi tous les domaines des mathématiques.
Henri Poincaré a marqué son époque d’une empreinte scientifique forte qui a fait sa réputation de « savant universel ». Sa vision va au-delà des cloisonnements entre mathématiques et physique.
La complicité de ces deux outils géométriques élémentaires que sont la règle non graduée et le compas a toujours été fructueuse, depuis l’Antiquité jusqu’à l’infographie moderne en passant par les pratiques des bâtisseurs du Moyen Âge.
Nous vivons depuis toujours dans un monde d’images, réelles ou imaginées, qui alimentent notre vécu.
On le sait depuis l’Antiquité : répéter mécaniquement un processus permet de trouver des solutions, exactes ou approchées, à de nombreux problèmes.
Apparue lors de la seconde guerre mondiale dans un contexte militaire qui lui a donné son nom, la RO (recherche opérationnelle), à la croisée des mathématiques, de l’informatique et de l’économie, s’est étendue à tous les domaines de la société.
De leur histoire ancienne, remontant à plusieurs millénaires, aux découvertes plus récentes, les courbes ont fait l’objet de recherches permanentes. Entre algèbre et géométrie, leur définition n’est d’ailleurs pas toujours simple ! Droites, cercles, coniques, spirales…
Les formations mathématiques font partie des plus demandées par le monde professionnel. On le savait pour la finance, l'économie ou l'informatique, mais la compétence mathématique est au cœur de la demande de nombreux autres secteurs industriels.
La construction progressive de l'analyse, en particulier la dérivation, a joué un rôle essentiel dans le développement de la théorie des extrema.
Comment définir précisément une surface ?
Comment définir précisément une surface ? La première approche, adoptée dès l’Antiquité, est celle de la géométrie. Sont ensuite venues l’algèbre, l’analyse et la topologie. Chacune de ces branches a permis d’enrichir le catalogue des surfaces remarquables et d’en imaginer d’autres, plus élégantes ou plus … pathologiques.
Dans l'histoire du développement de la pensée scientifique, les mathématiques ont été sollicitées depuis l'Antiquité pour résoudre des problèmes concrets liés à la phyqique et aux interrogations autour de l'astronomie. À l'inverse, cette interaction a engendré d'importanst progrès dans le développement des mathématiques.
Des voitures autonomes à la traduction automatique, des stratégies de jeux de société à la gestion de ressources, l’IA s’immisce partout dans nos vies. Les mathématiques contribuent de manière significative à cette révolution, avec notamment les réseaux de neurones artificiels, massivement utilisés dans de nombreuses applications.
L'intuition visuelle qui règne dans la géométrie plane est souvent prise en défaut lorsque l'on passe à la 3D. Alors que cercles, triangles et autres polygones ne posent pas de difficultés, (se) représenter les volumes n'est pas si évident.